If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2=168
We move all terms to the left:
7r^2-(168)=0
a = 7; b = 0; c = -168;
Δ = b2-4ac
Δ = 02-4·7·(-168)
Δ = 4704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4704}=\sqrt{784*6}=\sqrt{784}*\sqrt{6}=28\sqrt{6}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{6}}{2*7}=\frac{0-28\sqrt{6}}{14} =-\frac{28\sqrt{6}}{14} =-2\sqrt{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{6}}{2*7}=\frac{0+28\sqrt{6}}{14} =\frac{28\sqrt{6}}{14} =2\sqrt{6} $
| k4−7=−5 | | 6x−33/2=2/3x+7 | | 14.95-d=7.55 | | m+95=2 | | -k=19.5 | | d-14.95=7.55 | | 12=2/7x | | 12+6-6+x=3x+6 | | (4a)+2a+40=180 | | 4a+2a+40=180 | | 75=9(-8-4n)+36n | | (32/3)^x=100 | | 3x+20=4x–25 | | b+1=-7 | | 102/3^x=100 | | 3.8=2b | | 6.6+100=43.56+10x | | (15+25)+9x=67-17 | | 3/5(2a)=0 | | 3/5(2a)=1 | | 40-70x=10x+140 | | 2x+20+2x=28 | | –5x+9=29 | | -4(x)=1/2x+5 | | 4x/5=6x+28/5 | | 5/3+1/3x=262/3+7/3 | | 12x-6=4× | | 7p=14+7p2 | | 12x-4=7x+13 | | 2.9=y–6.32.9=y–6.32.9=y–6.32.9=y–6.32.9=y–6.32.9=y–6.32.9=y–6.3 | | -40=z | | (5x+11)=(16x-26) |